跳到主要內容

v0 API 是什麼?怎麼用?一篇教你搞懂功能、價格,還能搭配 Cursor 玩出 vibe coding!

Vercel 的 v0 是一款 AI 驅動的前端開發工具,能夠將自然語言描述轉換為可部署的 React 元件和 UI 介面,支援 Tailwind CSS,並可直接部署至 Vercel 平台。此外,v0 提供 API 介面,讓開發者能將其整合至其他工具,如 Cursor IDE,進一步提升開發效率。 Vercel

v0 API 介紹

v0 API 目前處於 Beta 階段,主要提供 v0-1.0-md 模型,具備以下特點:

  • 多模態支援:接受文字與圖片(base64 編碼)輸入。 
  • 快速串流回應:提供低延遲的串流回應。 
  • OpenAI 相容:遵循 OpenAI Chat Completions API 格式,易於整合至現有工具。 
  • 前端開發優化:特別針對 Next.js 和 Vercel 等現代前端框架進行優化。

要使用 v0 API,需訂閱 Premium 或 Team 方案,並啟用使用量計費。

使用方式

API 端點: POST https://api.v0.dev/v1/chat/completions

請求標頭:

Authorization: Bearer YOUR_V0_API_KEY
Content-Type: application/json

參數範例:

{
  "model": "v0-1.0-md",
  "messages": [
    { "role": "user", "content": "建立一個具有身份驗證功能的 Next.js AI 聊天機器人" }
  ],
  "stream": true
}

您也可以使用官方的 AI SDK 進行整合:

npm install ai @ai-sdk/vercel

範例程式 javascript

import { generateText } from 'ai';
import { vercel } from '@ai-sdk/vercel';

const { text } = await generateText({
  model: vercel('v0-1.0-md'),
  prompt: '建立一個具有身份驗證功能的 Next.js AI 聊天機器人',
});

v0 API 價格計算

v0 採用訂閱制與使用量計費相結合的模式,目前僅提供給 Premium or Team plan 使用者

使用量計費方面,根據模型與輸入/輸出 Token 數量計費。例如,v0-1.0-md 模型的輸入 Token 為 $3.00/百萬個 Token,輸出 Token 為 $15.00/百萬個

在 Cursor 中使用 v0 API

Cursor 是一款基於 VSCode 的 AI 編輯器,支援將 v0 API 作為自定義的 OpenAI 相容提供者進行整合。

快速開始

安裝 Cursor: https://cursor.com

開啟 Cursor 設定:

MacOS:⌘+Shift+J 

Windows/Linux:Ctrl+Shift+J

前往「Models」標籤。

捲動至「OpenAI API Key」,貼上您的 v0 API 金鑰。

點選「Override OpenAI Base URL」,輸入:

  https://api.v0.dev/v1

點選「Save」,然後「Verify」確認連線成功。

使用 Agent 模式

在 Cursor 的 Agent 模式中,您可以選擇任意 OpenAI 標籤的模型(如 gpt-4o、gpt-4-turbo 等),Cursor 將內部使用 v0-1.0-md 模型進行處理。

注意目前附件(圖片、檔案)尚不支援。

注意事項

授權問題:部分使用者在 Cursor 中整合 v0 API 時遇到授權錯誤(401)。請確保您使用的是 v0.dev 的 API 金鑰,而非 Vercel 的金鑰。

使用量控制:由於 v0 採用 Token 計費模式,建議您在使用時注意輸入與輸出內容的長度,以避免不必要的費用。

整合建議:將 v0 與 Cursor 結合使用,可大幅提升 UI 開發效率。建議先在 v0 中生成初步元件,然後在 Cursor 中進行優化與整合。

如需進一步了解 v0 的功能與使用方式,您可以參考以下影片:

留言

這個網誌中的熱門文章

Vibe Coding:為什麼 Junior 更快上手?Senior 要如何追趕?

現象層面(市場觀察) 最近有篇文章討論 junior & senior 開發者在 AI 時代的角色轉變,非常熱門。 身為 Cympack 產品開發團隊 ,我們也一直關注這個議題,在閱讀這篇文章時觀察到一些有趣的現象,對我們來說,這正好反映出 AI 正在改變開發生態,junior 借力 AI 快速成長、senior 則需要在 「架構思維」 與 「多 agent 協作」 中找到新定位,其中有些啟發(insight) 可以跟大家分享。 為什麼 Junior 更容易上手 vibe coding? 心智負擔低 → Junior 沒有太多傳統 code workflow 的框架包袱 敢於嘗鮮 → Gen Z / 年輕工程師天生習慣用 prompt-based 工具、跟 LLM 互動 少「優雅程式設計」的束縛 → 不太糾結「這樣寫會不會不夠優雅」,反而 embrace 快速迭代、快速出成果 反觀 Senior: 熟悉大型系統設計 有豐富的「工程正統流程」知識(架構設計、測試策略、效能優化、設計模式) 對 AI 生成 code 的品質 / 維護性通常比較保留 部分 10+ 年資深工程師,對 prompt engineering 沒那麼熟練,還在觀望 技能面(未來的關鍵能力) Vibe coding 本質上 = prompt engineering + AI co-pilot 管理能力 能力項目 誰目前比較有優勢? Prompt 撰寫 / AI 互動 Junior 較強(熟悉 chat-based 流程) 系統設計 / 架構把關 Senior 較強 AI 生成 code 驗證 / Bug 察覺能力 Senior 較強(能看出潛在問題) 快速疊代 / Hackathon 式開發 Junior 較強 長期維護性 / 穩定性 Senior 較強 總結 Junior 確實更快適應 vibe coding,並且更習慣以 「chat-based coding」 的工作流開發。 Senior 擁有驗證 AI 產物與系統設計的深度能力,但若不主動練習 vibe coding,長期會逐漸落後於新一波開發潮流。 就如同在 GAI 技術年會分享,希望帶給各位的感受, 『與 AI 協...

RAG 和 Prompt 原理超簡單解說!想知道 AI 怎麼找答案看這篇

這篇文章是給對於你已經開始使用所謂的 ChatGPT / Claude / Gemini 之類的 AI 服務,甚至是 Siri (嘿丟,他也是一種 AI 應用服務喔) 簡單來說是非 技術人員, PM,小白,想要趕快惡補的人 ,直接花十分鐘可以看完的一篇科普業配文章。 或者是概念僅止於,AI 這東西會幻想,會有誤差,會對於生活有些幫助但沒有幫助的人們,做個簡單又不是太簡單的介紹,希望用一個非常入門的方式讓你們有個了解。 當然,這篇文章目的很簡單, 就是引流 ,如果你身邊有已經對於 Web 技術開發的人員,歡迎報名分享給他,年末出國不如學一技在身,參加今年我們舉辦最後一場 RAG 實作工作坊,報名連結 , https://exma.kktix.cc/events/ai-for-dev-course-rag-2 注意: 接下來每個大段落結束都會有一段工商導入,但文章絕對精彩,請注意! 為了讓各位容易想像,我們將整個世界的資訊,先濃縮到這本『西遊記』的世界觀當中,我們整個世界都在這個 『西遊記』 ,而 大型語言模型 我們用 『書精靈』 來描述。 PS. 我們先預設各位,應該都有聽過,西遊記!如果沒有聽過西遊記的,請右轉出去,謝謝! 先來談談向量 在《西遊記》的世界裡,我們可以把 向量想像成一種「內容座標」 ,讓系統知道每個角色、場景、法術等的 「位置」和「距離」 。向量幫助語言模型知道不同內容之間的關聯程度。 向量就像內容的「距離」和「位置」 比方說,唐三藏的 「位置」(向量)會接近「佛經」和「取經」 的概念,因為他一路上都是為了取經而前進。孫悟空的 向量位置則會更靠近「金箍棒」和「七十二變」 這些概念,因為這些是他的特徵。 相似內容靠得更近:像「佛經」和「取經」會靠近唐三藏的向量,因為它們彼此有很強的關聯。 相差較大內容會離得較遠:像「取經」和「妖怪」「妖怪的寶藏」就距離比較遠,因為妖怪的寶藏和取經的目標關聯性不大。 是誰決定的這些位置? 簡單來說,這些位置和關係是模型自己學出來的。語言模型會閱讀大量的資料和這世界觀的資訊,觀察哪些詞語經常一起出現,根據「共同出現的頻率」來決定它們的關係,並且自動生成向量。例如: 如果模型看到 「唐三藏」 總是和 「取經」 一起出現,它就會讓「唐三藏」的向量靠近「取經」。 ...

Vibe Coding 協作到自建 Dev Agent?從 Claude / Codex 到 OpenHands

過去一年,越來越多工程師開始 把 AI 真正帶進工作流程 。從一開始用 ChatGPT、Claude 來問語法問題,到後來很多人愛上 Cursor,直接在編輯器裡讓 AI 幫忙改 code、補 test case、甚至自動整理 PR。這樣的開發體驗,已經大大改變了我們寫程式的方式。 更現實的是,在很多企業內部、政府單位、或涉及機密資料的專案裡, 其實根本不能直接用 Cursor 或雲端 LLM 工具。   畢竟這些服務通常會把資料傳到雲端模型做處理,萬一專案裡有未公開的技術、敏感客戶資料,或是受限於法規 (像金融、醫療、政府標案) ,直接用雲端 AI 工具就會踩 紅線 。  因此,許多團隊反而更希望 「自己架一套 Dev Agent」 ,可以在內網執行,資料完全掌握在自己手上,該整合的內部工具、該讀的私有 repo、該串的 CI/CD pipeline,全部客製化、安全可控。 這時候,像 OpenHands 這樣的開源 Dev Agent 框架就特別有價值。它的出發點不是單純的 AI 助手,而是讓你能夠打造出一個真的可以跑在自己環境裡、可以理解整個開發流程的 AI 工程師。從建置到部署,從 CLI 操作到瀏覽器查詢, 從多檔案編輯到自動測試,全部都能自己完成,甚至還能針對不同專案調整專屬的工作流。 對很多開始探索 AI 協作開發的團隊來說,這是一條 從 「AI 幫你寫一段程式」,走向「AI 幫你解決一整個任務」 的進化路徑。而且,還是在可控、可自定義、安全的環境裡完成的。 🧩 主要概述 OpenHands 是由 All‑Hands AI 開發的開源「軟體開發代理人平台」,能模仿人類工程師從建立程式、修改程式碼、執行指令,到瀏覽網頁、呼叫 API……等一整套開發流程 它提供雲端(OpenHands Cloud)與本地 Docker 運行版本,用戶能配置 LLM(如 Claude、OpenAI、Gemini…) 📚 核心特性與怎麼使用 代理人的工具能力 支援代碼編輯、命令行、執行環境、網頁瀏覽、API 呼叫—接近人類開發者完整技能。其中 OpenHands Cloud 版本提供 $50 試用額度讓大家方便使用,又或者如果自己本機有 docker 的話,可以自己Local 版本透過 Docker 自架環境。 ...