跳到主要內容

LINE Ads Platform 演進史,魔鬼藏在細節中

LINE Developer Day 2019 有一場 Session 讓自己一定要參加一下,LINE Ads platform revolution。

Ads Platform

對於大部分的人來說,這可能是一個最熟悉的陌生人,對於電商平台以及眾多需要曝光的使用者來說, Ads 的來臨讓各位迎來曙光。
最直接的例子莫過於 Facebook 廣告投遞,簡單來說,
投標 -> 快曝光 (給錢) -> 轉換 -> 達到目標

但是,最重要的就是這個 BUT , 投標與曝光之間有許多事情需要進行。
數位廣告已經脫離一刊 100 元的年代許久(雖然許多公司還是用這樣的概念在做事情),但實際上的概念是,
投標 -> 達到標地 -> 投遞 ->  投遞總量 * 投標金額 / 目標轉換
當此數字出來時,才會是大家所期待看到 100 元 / Click (或者任何轉換) 的計算金額。
聰明的各位肯定有想到了,這樣最簡單的方式,其實並不是告訴大家要投標多少,而是從使用者希望的轉換的預期金額,來進行回推投標金額。
因此還是一樣的概念,投標數字越高,就可以越快達到標,簡單來說就是,
如果有 100 元達不到的事情,那就 200 元,如果再不行就 ...

Ads Platform 驚奇之旅

對於廣告平台來說,有兩件事情,
  1. 讓使用者願意投錢
  2. 使用者投遞的錢,可以適當的放到正確位置,給正確的人
在所謂的 Realtime bidding 當中,最困難的部分莫過於, Realtime 的部分,以 LINE 的例子來說,如果台灣有 1900 萬的使用者,意味著如何在投遞的過程中做出 87% 相似,或盡量做到與實際狀況相同的推估,這要將 Data 在之前做大量的預先處理,以及對於版面的選擇做最優化處理,包含此群眾與版面之間互動關係推估等,會是
  • UI
  • API
  • DATA / Rules
  • AI / Preprocess
這幾個項目的結合,才可能可以做到很適當的配合與推估行為,讓使用者投遞金額時達到一定的信心程度,同時使用者在進行小量投遞的時候,也會參考 Ads Platform 的推估進行做實際數字比對,讓使用者進行交互比對,提高對於 Ads Platform 的信心程度。

Auto biding

能夠達到上述部分之後,擁有夠多的實際投遞結果,加上實際的數據,以及使用者喜好程度,素材,群眾類型,轉換行為等資訊後,才有辦法逐步做出 auto biding.
看似很簡單的投遞行為,實際上在 LINE Ads Platform 也提出幾個機制。
  • 即時監控機制(包含資料,投遞,使用者行為)
  • 可測試環境與資料 (進行實際狀況離線及線上驗證,進行小且多型的驗證 A/B testing)
  • 即時回饋機制(從投遞,到效益結果的表現)
而其中講者其實有輕描淡寫的講述了一部分,那就是在做 Prediction 的時候其實尤其困難,因為你不會知道使用者的投遞區間,假設 1week 的時間,其實你很難預測到 1week 後使用者行為會是怎麼轉變,會不會真的達到目標(轉換),並且這是要做整段時間的追蹤。
這段,雖然講述起來輕鬆,但實際過程實在煎熬,需要等待資料的累積,同時也需要同時修正預測模型和算法,需要不斷的與 AI 團隊溝通,同時又要背負著這個廣告平台怎麼這麼難用的煎熬 … (掩面哭泣)。
相信也是在這段時間才有辦法做出 Reach and frequency buying simulator,讓整體預估可以趨近於實際狀況。

後記

你說廣告系統好玩嗎?
很好玩,而且越是了解廣告系統行為之後,你就會更清楚 LINE / Google / Facebook 為什麼這樣下廣告,更可以了解數位廣告生態的模式,從投遞平台到實際測試投遞廣告,到廣告實際投放過程就可以體會到,目前這個廣告系統是到哪一個階段。
How LINE Ads Platform is Constantly Evolving 一場很輕鬆 40 多分鐘的演講,可能對於大部分的聽眾來說會是無感的,也會覺得只是在描述一個平台的成長過程,與自己所知道的名詞相差無幾。
實際上談笑風生之餘,底下藏了多少血淚,還有多少工程,數據,算法的結合,加上被需求與供給方追殺的血淚累積出來的成果。
就像是上面最後一張圖一樣,數位廣告方式實際上還在成長中,我們都也是在持續探索這個數位世界,當我們用 lookalike 探索出數位人格之後,能做的事情更大了。
但也表示需要對於使用者的隱私需要有更多的負責,也意味著 Ads Platform 需要做出一定的 filter, 讓真正的廣告可以被刊出,讓假廣告與擾亂人群的惡意擴散資訊退散,盡到平台該負責的責任。
雖然很久沒有接觸數位廣告,但能夠再次聽到 LINE Ads Platform 開發史這樣的歷程,可以讓我們思考一下,也許下個 5 年,數位廣告會是什麼樣子,我們可以怎麼進行整個架構規劃,一想起來就覺得『興奮啊』

留言

這個網誌中的熱門文章

npm 還可以看影片,沒想到真的有人這麼做

 還真的有人做這件事情, 庆余年2剛上線,有一位小哥竟然利用 npm 包的機制,將整套高清視頻都搬上來了。 https://x.com/fengmk2/status/1791498406923215020 圖片來源, https://x.com/fengmk2/status/1791498406923215020/photo/1 此 Package 出處 https://www.npmjs.com/package/lyq2?activeTab=versions 截圖留念, 機制說明 NPM(Node Package Manager)是一個流行的 JavaScript 軟件包管理器,用於管理和分發 Node.js 應用的依賴。它允許開發者將自己的代碼打包成「包」,並上傳到 NPM 的公共註冊表,供其他開發者下載和使用。這個過程通常包括以下步驟: 創建 NPM 包 :開發者將自己的代碼和相關文件打包成一個 NPM 包。 上傳到註冊表 :將包上傳到 NPM 的公共註冊表。 下載和使用 :其他開發者可以通過 NPM 命令行工具下載並安裝這些包。 這位小哥利用這一機制,可能是通過將整套高清視頻文件打包成 NPM 包並上傳到公共註冊表。其他人只需通過簡單的 NPM 命令即可下載這些視頻文件。 影響 版權問題 :這種行為涉及明顯的版權侵犯。高清視頻通常受到版權保護,未經授權的分發和下載都是非法的。 NPM 註冊表的可靠性 :這類內容的出現可能會損害 NPM 註冊表的可靠性和聲譽。NPM 註冊表是開發者分享和使用代碼的重要平台,如果充斥著這些不合法的內容,會影響其公信力。 潛在的安全風險 :將視頻文件偽裝成 NPM 包可能會帶來潛在的安全風險。下載這些包的用戶可能會無意中下載到惡意軟件或其他有害內容。 技術濫用 :這一行為展示了技術的濫用,原本為了方便開發者分享和使用代碼的機制,被用來分發非法內容,會對整個開發者社區造成負面影響。 歡迎留言給我,讓我們得到更多討論,一起回饋更多可能。 如果對於技術架構或者技術開發有相關需要顧問教育訓練服務或專案開發,聯絡方式如下,或者是與皇漢科技 EXMA-Square 進行聯繫。 FB: https://www.facebook.com/clonncd/ Twitter: https://twitter.com/clonncd 熱血漢誌: htt

面試者如何挑戰大工程師時代來臨?

面試者如何挑戰大工程師時代來臨? 全世界都在倡導轉職成為工程師,似乎轉職成為工程師就成為職場的救贖,真的是如此嗎?讓老衲來杠給各位聽。 最近有位好久不見的小朋友,是 2000 年出生的小蔡,對於即將面臨到面對職場的挑戰開始關心起技術,他開始尋找比較適合自己的領域,同時也開始在思考到底為了接下來的就職小蔡該如何準備。 詢問我說是不是可以考慮軟體開發工程師這條路線 對於他的詢問,反而引起我的注意, 這讓我開始思考並映射於最近招募的經驗,軟體開發此領域是不是對於每個人都是可以擔任的職啀,這邊分享一些自己的看法希望對各位有所幫助。 全民工程師這件事情 在全球景氣低迷的狀況下,的確特別在這一年大家會很有感覺萬物齊漲,薪水不漲,薪資就是一直停滯不前。 很多時候,在不同的領域中,會發現整個薪資就算是擔任了管理職務主管你也會面臨到薪資的強大屏障在自己面前。 這個時候, 軟體工程師年薪百萬口號 似乎就成了一種救贖。 好像成為了工程師就可以達到年薪百萬,在家輕鬆工作,不用打卡也不用受到風吹雨淋,隨時想工作就可以工作,每個月又有固定薪水入帳,感受到類財富自由,人生的美好。 如果能夠爭取到跨國公司的職位,這份薪水有可能還可以上看每個月十多萬以上,甚至是往上也是極度有可能的事情,人生美好層次又再度提高了起來。 但這件事情是真的每個人都可以達到嗎? 還是這就是另外一種性存者偏差呢? 亦或者這些人其實是金字塔頂端的小眾? 每份履歷都像是同一種履歷 最近在最近幾年在面試工程師的時候特別會看到許多轉職者,一開始履歷裡面看到相關的作品一開始會覺得十分的驚艷, Wow, 現在的新手就可以做到如此精美的畫面,這些畫面是我當初用 Bootstrap 也做不出來的東西,許多的互動體驗好的一個不行,做出來的頁面配色和對齊也是極致。 但是隨著時間推移,多看了幾封履歷之後,就會發現在各大技術養成學院出來的學生履歷成果內容如出一轍,在面試的過程中也會詢問許多關於框架的底層概念,和比較技術觀念的時候,甚至是許多框架的核心概念,就很容易露出馬腳。 很多面試者會 一問三不知 ,透過許多引導,但殘酷的是連關鍵字是什麼都也無法推敲出來,更不用說在小組裡面到底怎麼樣合作,許多不同線上產品的比較,使用者流程,使用者後面的互動邏輯等,幾乎是風吹一片倒,只能

初級工程師的迷霧:解析開發中常見的困擾與挑戰

在我和工程團隊的共事歷程中,我注意到初級工程師經常遇到的問題。這些問題,無論在面對簡單或複雜的挑戰時,都能體現出來。歸納起來會有常見以下幾個面向。 簡單的問題 發現許多初級工程師在面臨簡單或複雜的問題時,常有可能會遇到困難,時常會有一種繞圈圈的氛圍, 常見問題分別有, 問題本質 首先是對於問題本質上並沒有釐清完成的目標,以及問題本身是要解決什麼樣的商業問題,客戶問題,導致於因為總總原因,做了 scope 過大,或者,花了過多時間進行 over design 的問題發生。 過度依賴套件 發現在新手開發中,會發現為了解決單一問題,卻引用了一大包的 libary 或者引用了不適合此問題的套件。在求解的過程中,容易導致要解決套件的問題,而忘記了要解決的問題是什麼。 複雜的問題 我們在面對複雜的問題時,經常會因為缺乏策略與經驗而感到困惑,反而在處理看似簡單的問題時,卻可能因為過度依賴套件或缺乏組合技巧,而陷入泥淖。不論是複雜或是簡單的問題,我們都需要找到更有效的解決方式。 不論是經常過度依賴套件求解,又或者複雜的問題不知道如何拆解。因此導致新手可能會感到無所適從,不知道如何運用組合技巧。因此,他們往往在處理看似簡單的問題時,容易陷入困境,導致專案的時程延宕。 特別是各自工程師都有開發壓力時,身為新手開發者就更難與資深開發者進行討論,從中汲取前輩的經驗,轉化成自身的價值發生。 解決的方向 上述的問題,自己再開發的時候也或多或少會發生,當然在新入門者更是容易深陷其中,不知如何自拔。 除了參與社群,從傾聽到互動的過程中,從前輩的經驗進行思考及內化的過程。 在 AI Generated 時代,我們可以透過 LLM 透過適當的思考方式和問答過程,逐步的逼近答案,也許是一條可以進行的道路。 這裡,會以透過內部訓練的經驗,提出如何以 ChatGPT 這樣的工具為例,提升對於新手工程師的幫助。 透過 ChatGPT,我們可以解決許多類似的問題。例如,我們可以透過 ChatGPT 建立一個問答系統,進行問題分析,或是請 ChatGPT 提出最適合的工具和方法來解決問題,尤其是那些可以透過使用基礎 function 就能處理的簡單問題。這不僅能讓我們避免過度依賴套件,更能發掘並利用基礎工具的能力。 工商時間 7/3 (週