跳到主要內容

[分享] watchFile 陷阱與進階討探 (Node.js), watchFile tricky way on Node.js

watchFile 陷阱與進階討探


這兩天因為之前寫得一個 simple-livereload 無法支援 Windows, Mac ,開始進行小改版,也稍微對 file systemPath 做些小小測試,其中發現了一個關於 watchfile 小小的問題。

問題探討


先來看一下程式碼
var fs = require('fs');
var fullpath = '/home/clonn/test.html';

fs.watchFile(fullpath, function (curr, prev) {
    console.log('file update')
});

接著進行檔案執行之後,會發現出現一個問題,當我修改 test.html 的時候,照理來說應該只有出現一次 file update ,可是卻出現 兩次 ,這實在有點不合乎邏輯。
拜了一下 Google 大神之後,終於找到原因,因為 file system 的 watchFile 實做,當關注的檔案片段(data chunk) 被更動的時候,就會觸發(trriger),接著檔案修改完成,又會重新觸發一次事件,所以導致當一個檔案修改,會被觸發兩次。

處理方法


在 filewatch 的 listen 事件當中會提供 curr, prev,之前和目前的物件(Object) ,接著使用此事件進行時間比對,所以剛才的檔案我們修改如下,
var fs = require('fs');
var fullpath = '/home/clonn/test.html';

fs.watchFile(fullpath, function (curr, prev) {
    if (curr.mtime.getTime() !== prev.mtime.getTime())
        console.log('file update');
});
如此就可以得到正確結果,檔案修改,就只會進行一次觸發。

進階處理


其實 fs.watch, fs.watchFile 會回傳 listener 物件,如果要使用可以將程式碼修改如下,
var fs = require('fs');
var fullpath = '/home/clonn/test.html';
var listen = fs.watchFile(fullpath, function (curr, prev) {});
listen.on('change', , function (curr, prev) {
    if (curr.mtime.getTime() !== prev.mtime.getTime())
        console.log('file update');
});

這樣的好處是在于,可以對於此物件進行處理,同時使用事件包裝等方式,讓 listen 可以重複被使用。
剛才的程式如果稍嫌太長,可以在 callback 裡面稍微修改一下
if (+curr.mtime !== +prev.mtime)    
    console.log('file update');

會得到相同效果,主要是 JavaScript 的 Date type 轉型處理,當進行運算時,會自動轉為 Number,前面增加一個 + 就會進行加號運算。

結語


Node.js v0.8.0 在這次對於 file system 的效能加強許多,同時檔案的監控,尋找都可以支援跨平台(windows, Mac, linux),用來開發一些跨平台管理工具,是個不錯的選擇。

Node.js Taiwan

如果對於此篇內容有任何問題,歡迎透過 Node.js 台灣社群進行討論

參考資料

程式碼參考

留言

這個網誌中的熱門文章

RAG 和 Prompt 原理超簡單解說!想知道 AI 怎麼找答案看這篇

這篇文章是給對於你已經開始使用所謂的 ChatGPT / Claude / Gemini 之類的 AI 服務,甚至是 Siri (嘿丟,他也是一種 AI 應用服務喔) 簡單來說是非 技術人員, PM,小白,想要趕快惡補的人 ,直接花十分鐘可以看完的一篇科普業配文章。 或者是概念僅止於,AI 這東西會幻想,會有誤差,會對於生活有些幫助但沒有幫助的人們,做個簡單又不是太簡單的介紹,希望用一個非常入門的方式讓你們有個了解。 當然,這篇文章目的很簡單, 就是引流 ,如果你身邊有已經對於 Web 技術開發的人員,歡迎報名分享給他,年末出國不如學一技在身,參加今年我們舉辦最後一場 RAG 實作工作坊,報名連結 , https://exma.kktix.cc/events/ai-for-dev-course-rag-2 注意: 接下來每個大段落結束都會有一段工商導入,但文章絕對精彩,請注意! 為了讓各位容易想像,我們將整個世界的資訊,先濃縮到這本『西遊記』的世界觀當中,我們整個世界都在這個 『西遊記』 ,而 大型語言模型 我們用 『書精靈』 來描述。 PS. 我們先預設各位,應該都有聽過,西遊記!如果沒有聽過西遊記的,請右轉出去,謝謝! 先來談談向量 在《西遊記》的世界裡,我們可以把 向量想像成一種「內容座標」 ,讓系統知道每個角色、場景、法術等的 「位置」和「距離」 。向量幫助語言模型知道不同內容之間的關聯程度。 向量就像內容的「距離」和「位置」 比方說,唐三藏的 「位置」(向量)會接近「佛經」和「取經」 的概念,因為他一路上都是為了取經而前進。孫悟空的 向量位置則會更靠近「金箍棒」和「七十二變」 這些概念,因為這些是他的特徵。 相似內容靠得更近:像「佛經」和「取經」會靠近唐三藏的向量,因為它們彼此有很強的關聯。 相差較大內容會離得較遠:像「取經」和「妖怪」「妖怪的寶藏」就距離比較遠,因為妖怪的寶藏和取經的目標關聯性不大。 是誰決定的這些位置? 簡單來說,這些位置和關係是模型自己學出來的。語言模型會閱讀大量的資料和這世界觀的資訊,觀察哪些詞語經常一起出現,根據「共同出現的頻率」來決定它們的關係,並且自動生成向量。例如: 如果模型看到 「唐三藏」 總是和 「取經」 一起出現,它就會讓「唐三藏」的向量靠近「取經」。 ...

Vibe Coding:為什麼 Junior 更快上手?Senior 要如何追趕?

現象層面(市場觀察) 最近有篇文章討論 junior & senior 開發者在 AI 時代的角色轉變,非常熱門。 身為 Cympack 產品開發團隊 ,我們也一直關注這個議題,在閱讀這篇文章時觀察到一些有趣的現象,對我們來說,這正好反映出 AI 正在改變開發生態,junior 借力 AI 快速成長、senior 則需要在 「架構思維」 與 「多 agent 協作」 中找到新定位,其中有些啟發(insight) 可以跟大家分享。 為什麼 Junior 更容易上手 vibe coding? 心智負擔低 → Junior 沒有太多傳統 code workflow 的框架包袱 敢於嘗鮮 → Gen Z / 年輕工程師天生習慣用 prompt-based 工具、跟 LLM 互動 少「優雅程式設計」的束縛 → 不太糾結「這樣寫會不會不夠優雅」,反而 embrace 快速迭代、快速出成果 反觀 Senior: 熟悉大型系統設計 有豐富的「工程正統流程」知識(架構設計、測試策略、效能優化、設計模式) 對 AI 生成 code 的品質 / 維護性通常比較保留 部分 10+ 年資深工程師,對 prompt engineering 沒那麼熟練,還在觀望 技能面(未來的關鍵能力) Vibe coding 本質上 = prompt engineering + AI co-pilot 管理能力 能力項目 誰目前比較有優勢? Prompt 撰寫 / AI 互動 Junior 較強(熟悉 chat-based 流程) 系統設計 / 架構把關 Senior 較強 AI 生成 code 驗證 / Bug 察覺能力 Senior 較強(能看出潛在問題) 快速疊代 / Hackathon 式開發 Junior 較強 長期維護性 / 穩定性 Senior 較強 總結 Junior 確實更快適應 vibe coding,並且更習慣以 「chat-based coding」 的工作流開發。 Senior 擁有驗證 AI 產物與系統設計的深度能力,但若不主動練習 vibe coding,長期會逐漸落後於新一波開發潮流。 就如同在 GAI 技術年會分享,希望帶給各位的感受, 『與 AI 協...

v0 API 是什麼?怎麼用?一篇教你搞懂功能、價格,還能搭配 Cursor 玩出 vibe coding!

Vercel 的 v0 是一款 AI 驅動的前端開發工具,能夠將自然語言描述轉換為可部署的 React 元件和 UI 介面,支援 Tailwind CSS,並可直接部署至 Vercel 平台。此外,v0 提供 API 介面,讓開發者能將其整合至其他工具,如 Cursor IDE,進一步提升開發效率。 Vercel v0 API 介紹 v0 API 目前處於 Beta 階段,主要提供 v0-1.0-md 模型,具備以下特點: 多模態支援:接受文字與圖片(base64 編碼)輸入。  快速串流回應:提供低延遲的串流回應。  OpenAI 相容:遵循 OpenAI Chat Completions API 格式,易於整合至現有工具。  前端開發優化:特別針對 Next.js 和 Vercel 等現代前端框架進行優化。 要使用 v0 API,需訂閱 Premium 或 Team 方案 ,並啟用使用量計費。 使用方式 API 端點: POST https://api.v0.dev/v1/chat/completions 請求標頭: Authorization: Bearer YOUR_V0_API_KEY Content-Type: application/json 參數範例: { "model": "v0-1.0-md", "messages": [ { "role": "user", "content": "建立一個具有身份驗證功能的 Next.js AI 聊天機器人" } ], "stream": true } 您也可以使用官方的 AI SDK 進行整合: npm install ai @ai-sdk/vercel 範例程式 javascript import { generateText } from 'ai'; import { vercel } from '@ai-sdk/vercel'; const { text } = await generateText({ model: vercel...