跳到主要內容

發表文章

目前顯示的是 11月, 2024的文章

2024 推薦關注的 JavaScript 知識

以 js 整體發展來看,目前自己最看好的發展是在於兩個面向,一個部分是 Storybook ,一個部分是 Web container ,為何會是這兩個部分,這邊也分享一下自己的見解。 Storybook Storybook, 如果有用過的朋友都知道,他是屬於前端的展示,可以從 UI 的結構,到 parameter 的傳入,以及 component 如何使用的方式細節呈現等完全呈現。 AI 的到來,加上 Storybook 的呈現,可以讓新發展,或者更新版本的 UI Component 不再是孤兒,很快的 AI 可以學習如何使用新的 Component, 且在同時可以讀取 UI 畫面(Vision) 的狀態下進行識別 UI 在呈現上可以使用的方式。 同時也可以直接了解整體程式碼在使用上可以有怎麼樣參數傳入的方式,甚至是,你只要發展出一套 react 的版本,透過 AI 可以直接透過 Storybook 的版本,直接用最典型的狀態(但不一定效果最佳)轉換成 Vue, 或者 Villina JS 的版本。 這對於開發者,是一個多大的福音,Do Once, Call Everywhere. Web Container Web Container, 正所謂,Container 之下無蟒夫,容器化不只是能夠跑在後端,現在也能夠跑在前端,加速了整體的部署,同時也加速了以往的 SSR 的限制,以往很多時候『it works on my pc』的窘境將不再復見,你的瀏覽器將是我的雲端,You are the edge of mine, 聽起來有多浪漫,光靠這招就是一個歡呼! 完全就是一個端到端,環境的問題接下來將再不是一個問題,以往會有的 Node.js 的問題,接下來都可以在 Web Container 裡面排除掉,直接快速的進行部署實現,同時執行出應用端應該有的樣子。 當然瀏覽器支援度會是一個問題,不過我相信這只是時間的問題而已,相信在座的各位,最多的就是時間! 等吧! JSDC 2024  JavaScript Developer 年度盛會,線上展開。 這次講師要講什麼,就是要講這些有的沒的,還不來聽嗎? 聽懂幾個關鍵字,開心學會一輩子! JSDC 2024 網站: https://2024.jsdc.tw/ JSDC 2024 售票連結: https://www.a...

AI 時代工程師要懂的十件事情!

 AI 時代工程師要懂什麼 AI 時代工程師要學 Prompt AI 時代工程師要學 template AI 時代工程師要學 RAG AI 時代工程師要學 專案規格 AI 時代工程師要學 需求規範 AI 時代工程師要學 通用格式概念情境 AI 時代工程師要學 說人話 AI 時代工程師要學 通俗的方式插入關鍵字、簡易的方式形容一件事情 AI 時代工程師要學 倒果為因的能力 AI 時代工程師要學 允許不到 90 分的答案

AI 時代下的年輕開發者學習提示

AI時代下的年輕開發者學習提示 我百分之一百支持各位用AI工具建立一個簡單的應用 最簡單的方式就是透過網頁,AI工具建立網頁的應用是非常完整  再接下來我才會建議,基本功還是要學習 網路上的資訊固然很多,但還是建議買幾本書回來看比較實在 書中沒有黃金屋,書中有經過編輯的滋滋教誨! 參與課程其實也是一個方式,學習完一套之後記得先試著把應用做出來 很多時候你用什麼技術,用什麼框架並不重要 工具都只會是輔助,但是更重要的是,最終,如果你的目的是成為一位工程師,那就要看懂 AI 工具所產出的程式碼,理解他並了解他 如果你只是想要驗證商業模式,那就是另外一段故事,我們可以另外開一個章節來說明 ...

RAG 和 Prompt 原理超簡單解說!想知道 AI 怎麼找答案看這篇

這篇文章是給對於你已經開始使用所謂的 ChatGPT / Claude / Gemini 之類的 AI 服務,甚至是 Siri (嘿丟,他也是一種 AI 應用服務喔) 簡單來說是非 技術人員, PM,小白,想要趕快惡補的人 ,直接花十分鐘可以看完的一篇科普業配文章。 或者是概念僅止於,AI 這東西會幻想,會有誤差,會對於生活有些幫助但沒有幫助的人們,做個簡單又不是太簡單的介紹,希望用一個非常入門的方式讓你們有個了解。 當然,這篇文章目的很簡單, 就是引流 ,如果你身邊有已經對於 Web 技術開發的人員,歡迎報名分享給他,年末出國不如學一技在身,參加今年我們舉辦最後一場 RAG 實作工作坊,報名連結 , https://exma.kktix.cc/events/ai-for-dev-course-rag-2 注意: 接下來每個大段落結束都會有一段工商導入,但文章絕對精彩,請注意! 為了讓各位容易想像,我們將整個世界的資訊,先濃縮到這本『西遊記』的世界觀當中,我們整個世界都在這個 『西遊記』 ,而 大型語言模型 我們用 『書精靈』 來描述。 PS. 我們先預設各位,應該都有聽過,西遊記!如果沒有聽過西遊記的,請右轉出去,謝謝! 先來談談向量 在《西遊記》的世界裡,我們可以把 向量想像成一種「內容座標」 ,讓系統知道每個角色、場景、法術等的 「位置」和「距離」 。向量幫助語言模型知道不同內容之間的關聯程度。 向量就像內容的「距離」和「位置」 比方說,唐三藏的 「位置」(向量)會接近「佛經」和「取經」 的概念,因為他一路上都是為了取經而前進。孫悟空的 向量位置則會更靠近「金箍棒」和「七十二變」 這些概念,因為這些是他的特徵。 相似內容靠得更近:像「佛經」和「取經」會靠近唐三藏的向量,因為它們彼此有很強的關聯。 相差較大內容會離得較遠:像「取經」和「妖怪」「妖怪的寶藏」就距離比較遠,因為妖怪的寶藏和取經的目標關聯性不大。 是誰決定的這些位置? 簡單來說,這些位置和關係是模型自己學出來的。語言模型會閱讀大量的資料和這世界觀的資訊,觀察哪些詞語經常一起出現,根據「共同出現的頻率」來決定它們的關係,並且自動生成向量。例如: 如果模型看到 「唐三藏」 總是和 「取經」 一起出現,它就會讓「唐三藏」的向量靠近「取經」。 ...